Sustainable Data Center Cooling: CUE, Free Cooling, and ERE

Nov. 17, 2021
Liquid cooling provides a pathway to more effective opportunities for energy reuse and recovery. A new special report from Nautilus Data Technologies and Data Center Frontier looks at how to sustainably meet high density cooling challenges.

Last week in our special report series, we explored three external heat rejection systems. This week, in our final article in the series on sustainable data center cooling challenges, we’ll discuss three more external heat rejection systems. 

Carbon Usage Effectiveness

Carbon Usage Effectiveness (CUE) is another essential sustainability metric directly tied to the source of energy generation.

It is expressed as CUE Source – Based on the annualized carbon emitted by the energy source (power generation), expressed as kilograms of carbon emitted per kWh of IT Energy generated. (kg/IT kWh).

The EPA’s Emissions & Generation Resource Integrated Database (eGRID) website has a tool that allows users to enter their zip codes (or select a region) to view their power profiles.

Source: EPA

Source: EPA

Free Cooling

Free cooling is typically referred to as any type of cooling system which reduces or eliminates the need for mechanical cooling (i.e., compressor based). This can include direct or indirect air-side economizers, as well as water-side economizers. The water-side economizer is generally based on a heat exchanger which allows cooling tower water to reduce the load on water-cooled chillers during cooler weather. All of these systems generally save a percentage of mechanical cooling energy during cooler weather. Overall, free cooling is more effective in colder climates, for both air-side and water- side economizers. There are many variations and combinations of methodologies that can be combined to maximize energy effectiveness and optimize water usage over the seasons.

While water in itself is not energy, it requires energy to process and deliver clean water. This is often overlooked or ignored. However, as water shortages increase, this is being addressed in the California Energy Code: Codes and Standards Enhancement (CASE) Initiative 2022 – “Title 24 2022 Nonresidential Computer Room Efficiency” (CA-Title 24), as “Embedded Electricity in Water.”

Alternately, waste heat can also be rejected into bodies of water, such as lakes and rivers or even the ocean. In many cases, the temperature ranges of those bodies of water are such that they can be used all year round to cool data centers without the need for mechanical cooling, a significant energy savings. These savings can also reduce or eliminate consumption of source water, as well as reducing fossil fuels used in non-renewable power generation.

Energy Reuse Effectiveness

The total waste heat generated by an air-cooled or a liquid-cooled data center is virtually the same for a given amount of total energy consumed. Clearly, a lower PUE will reduce the total energy consumed for a given IT load. While end-to-end thermal management typically refers to “chip-to-atmosphere” heat rejection, it is still just waste heat. One of the long-term sustainability goals is being able to recover and reuse waste heat.

The Green Grid introduced the energy reuse effectiveness (ERE) metric in 2011, energy reuse factor (ERF), with relatively little impact. This was primarily because waste heat from air-cooled ITE being rejected is more difficult to recover effectively.

Liquid Cooling provides a pathway to more effective opportunities for energy reuse and recovery. Its higher fluid operating and return temperatures improve the ability to recover a portion of the waste heat energy. However the challenges are multi- dimensional, but as time progresses the interest, technology improvements and cost effectiveness will continue to drive this initiative. While higher power densities can create cooling challenges, it also offers multiple benefits and opportunities to improve overall energy efficiency, IT performance, and sustainability. However, the challenges are multi-dimensional, but the interest, technology improvements, and cost-effectiveness will continue to drive this initiative as time progresses.

Download the full report, “Sustainably Meeting High Density Cooling Challenges: When, Where, and How,” courtesy of Nautilus Data Technologies for exclusive look at the Nautilus water-cooled data center.

About the Author

Julius Neudorfer

Julius Neudorfer is the CTO and founder of North American Access Technologies, Inc. (NAAT). NAAT has been designing and implementing Data Center Infrastructure and related technology projects for over 25 years. He also developed and holds a patent for high-density cooling. Julius is a member of AFCOM, ASHRAE, IEEE and The Green Grid. Julius has written numerous articles and whitepapers for various IT and Data Center publications and has delivered seminars and webinars on data center power, cooling and energy efficiency.

Sponsored Recommendations

Tackling Utility Project Challenges with Fiberglass Conduit Elbows

Explore how fiberglass conduit elbows tackle utility project challenges like high costs, complex installations, and cable damage. Discover the benefits of durable, cost-efficient...

How Deep Does Electrical Conduit Need to Be Buried?

In industrial and commercial settings conduit burial depth can impact system performance, maintenance requirements, and overall project costs.

Understanding Fiberglass Conduit: A Comprehensive Guide

RTRC (Reinforced Thermosetting Resin Conduit) is an electrical conduit material commonly used by industrial engineers and contractors.

NECA Manual of Labor Rates Chart

See how Champion Fiberglass compares to PVC, GRC and PVC-coated steel in installation.

Anggalih Prasetya/Shutterstock.com
Source: Anggalih Prasetya/Shutterstock.com

AI in the Data Center: Building Partnerships for Success

Wesco’s Alan Farrimond explains how the right partnerships can help data centers overcome the barriers to growth and meet the demands of AI.

White Papers

Get the full report.

Sustainable Power Generation: Kohler’s Pursuit of Clean Energy Solutions

March 7, 2022
Kohler examines how sustainable power generation can help balance the need for emergency power with the climate emergency.