• About Us
  • Partnership Opportunities
  • Privacy Policy

Data Center Frontier

Charting the future of data centers and cloud computing.

  • Cloud
    • Hyperscale
  • Colo
    • Site Selection
    • Interconnection
  • Energy
    • Sustainability
  • Cooling
  • Technology
    • Internet of Things
    • AI & Machine Learning
    • Edge Computing
    • Virtual Reality
    • Autonomous Cars
    • 5G Wireless
    • Satellites
  • Design
    • Servers
    • Storage
    • Network
  • Voices
  • Podcast
  • White Papers
  • Resources
    • COVID-19
    • Events
    • Newsletter
    • Companies
    • Data Center 101
  • Jobs
You are here: Home / Colo / Leaving Legacy Behind: Understanding GaN Power

Leaving Legacy Behind: Understanding GaN Power

By Bill Kleyman - September 24, 2018

Leaving Legacy Behind: Understanding GaN Power

Manufacturers of power supplies, servers and other power-driven equipment typically vet power converter technologies based on four key pillars. (Photo: Rich Miller)

LinkedinTwitterFacebookSubscribe
Mail

This is the second entry in a four-part Data Center Frontier special report series that explores how Gallium Nitride, or GaN, is showing significant benefits for data center equipment refreshes. This article breaks down GaN technologies and benefits into four pillars normally used to vet power converter technologies to provide a comprehensive understanding of the potential of GaN power. 

GaN power

Download the full report.

Gallium nitride (GaN) is a wide bandgap semiconductor material that has been in use since the 1990s. GaN initially found its way into light emitting diodes (LED) as well as optoelectronics. GaN’s very high breakdown voltages, high electron mobility, and saturation velocity has also made it an ideal candidate for high-power applications.

In 2010, the first low-voltage GaN transistors hit the market. In 2012, the first high-voltage GaN FETs (field effect transistors) targeting 650 Volt (V) applications became available, which is where GaN gets interesting.

At this power level, GaN’s inherent attributes enable it to displace silicon in numerous AC to DC applications designed for server, automotive, broad industrial, computing, renewable energy and telecom. Adoption is gaining momentum in these markets as confidence in the technology’s reliability and performance rise.

Manufacturers of power supplies, servers and other power-driven equipment typically vet power converter technologies based on four key pillars. Viewing GaN in this light provides a fundamental understanding of the value proposition that GaNbased solutions can bring to data center applications.

Lifetime reliability tests determine the GaN solution’s intrinsic capabilities within extreme temperature and voltage environments.

GaN power

Pillar One: Quality and reliability

Heavily-stressed power systems like those used in data center equipment and infrastructure must operate reliably. Power conversion technologies, therefore, must first and foremost exhibit high quality and high reliability. Will transistors fail under high-stress conditions? What is a transistor’s average life span? Will transistor performance degrade over time and, if so, how much? To determine answers to these and other questions, semiconductor leaders put devices through industry-standard qualification tests and, in the case of high-voltage GaN pioneer Transphorm, extended rigorous tests to assure product reliability.

JEDEC (general market) and AEC-Q101 (automotive market) are trusted industry qualifications testing a transistor’s infant mortality rate (device interactions between package mold compound materials, lead frames, die attachments).

Lifetime reliability tests determine the GaN solution’s intrinsic capabilities within extreme temperature and voltage environments. They involve accelerating normal life cycle factors to identify failure rates over time (e.g., FIT, MTBF and PPM rates).

Temperature cycles, power cycles, high-temperature gate bias, high-temperature direct current, high-voltage overstress, and high-temperature reverse bias (including destructive physical analysis), unbiased accelerated stress testing, wire bond integrity, and much more are all analyzed. Note: GaN exhibits different failure modes than silicon. And, as many of these tests were designed for silicon, select tests such as High-Temperature Direct Current, HighTemperature Over Stress, and Low/High-Temperature Reverse Bias are necessary to accurately determine GaN-specific lifetime reliability.

GaN Power

Certain GaN power transistors have successfully gone through all of the above discretionary tests, satisfying basic requirements for use in real-world applications, including earning JEDEC and AEC-Q101 qualifications. These transistors are designed and manufactured by Transphorm. The company’s quality and reliability data are publicly available as they build confidence in GaN as well as inspire application engineers to push the envelope with respect to system features and designs.

Pillar Two: Performance

Performance can be viewed in three segments: efficiency, density, and system cost.

GaN transistors convert energy to usable power at traditional frequencies, as they internally switch two to three times faster than silicon transistors. High switching speeds result in lower crossover losses; simply put, less energy is lost or wasted during conversion. Collectively, these advantages then result in higher power efficiency, increased power density with the same thermal footprint, and the ability to reduce size, creating a lighter weight, smaller overall system that can lead to still more benefits.

GaN can be used in various power system topologies. However, GaN uniquely enables power system engineers to use a hardswitching topology with a specific power factor correction technique (bridgeless totempole) that is, in most cases, impractical with silicon. This system configuration maximizes the GaN’s total potential (efficiency, power density and size) while lowering system component count, and, thereby the overall system cost.

Outside of the hard-switched bridgeless totempole PFC, GaN can also be used in soft-switching topologies. In these applications, GaN again offers lower crossover losses and reduced output capacitance, therefore having the ability to operate efficiently at lower load currents and be driven at higher frequencies than silicon to achieve performance increases.

This is all a cursory explanation as to how GaN-based power systems can dramatically increase power density over silicon-based power systems, generating more power output in the same-sized system or the same power output in a smaller-sized system. These are key capabilities desired, for example, by power supplies seeking greater than 80 PLUS Titanium efficiency levels.

On the topic of performance, specific on-resistance is a standard used to show MOSFET technology evolution. As seen in Figure 1, silicon MOSFETs have hit their theoretical limits. Related, though silicon carbide (SiC) — another high-voltage alternative material — is coming closer to its limits, GaN still has a way to go.

Pillar Three: Production

Though introduced in recent years, high-voltage GaN is in production and accessible. In fact, 6-inch wafers are produced in a number of fabs with manufacturing lines dedicated to GaN’s unique requirements.

What’s more, reputable power supply and industrial equipment manufacturers are in production — Bel Power, CORSAIR, Seasonic, Yaskawa — selling groundbreaking GaN-based products that literally demonstrate GaN’s ability to increase efficiency and power density. For example, Seasonic’s new high-efficiency 1.6 kW platform uses leading GaN technology. This platform yields a 99 percent PFC efficiency and will be deployed in Seasonic battery chargers as well as catalog Seasonic PC, server and gaming power supplies. Additional use cases will be outlined in a later section.

GaN power

Pillar Four: Cost and technology evolution

Leaders in the power space have been researching and developing high-voltage GaN for a decade or more. In fact, the GaN technology specifically referenced as examples in this paper is third generation. High-voltage GaN suppliers have published real-world use cases based on customer products available in the market. (Consider this: When going through a data center refresh cycle, you don’t have to work with ”up-and-coming” solutions that may or may not stand the test of time.)

The generational improvements have not only increased performance, quality and reliability highlighted above, they have also enabled transistor price reductions year over year. This is an important outcome as it demonstrates that high-voltage GaN innovation and volume increases will drive down cost. This bodes well for the technology’s overall ROI factor and market longevity.

This Data Center Frontier series focused on data center efficiency and GaN technologies will also cover the following topics over the coming weeks:

  • Rise of GaN Technologies Bodes Well for Data Center Efficiency
  • Decrease OPEX using GaN
  • High Voltage GaN Cases
  • Leveraging GaN: How to Get Started

Download the full Data Center Frontier Special Report, “Optimizing Data Center Power Efficiency: How Forefront GaN Technologies Show Significant Benefits for Data Center Refreshes,” courtesy of  transphorm. 

And for further coverage, check out Data Center Frontier’s page dedicated to the GaN market that will provide the latest stats and info on the power conversion tool that has the potential to change the landscape of the modern data center.

LinkedinTwitterFacebookSubscribe
Mail

Tagged With: Data Center Design, Data Center Power, Energy Efficiency, Gallium Nitride, GaN special report, special report, transphorm

Newsletters

Stay informed: Get our weekly updates!

Are you a new reader? Follow Data Center Frontier on Twitter or Facebook.
bill@kleyman.org'

About Bill Kleyman

Bill Kleyman is a veteran, enthusiastic technologist with experience in data center design, management and deployment. Currently, Bill works as the Executive Vice President of Digital Solutions at Switch.

  • Facebook
  • Instagram
  • LinkedIn
  • Pinterest
  • Twitter

Voices of the Industry

Mitigate Risk, Improve Performance and Decrease Operating Expenses through Data Center Self-Performance

Mitigate Risk, Improve Performance and Decrease Operating Expenses through Data Center Self-Performance If a vendor conducts the actual work in your data center, then you or your operator aren’t maximizing your current operating resources and are experiencing incremental cost and risk. Chad Giddings of BCS Data Center Operations, explains the importance of your data center provider having a high-degree of self-performance.

White Papers

Geo diversity data center location

The Business Case for Data Center Geo Diversity

Geo diversity, or shortening the distance that your data travels, will allow you to reaching your user bases more effectively, and create better customer experiences. This white paper from Venyu explains the benefits of a geo-diverse data center partner.

Get this PDF emailed to you.

We always respect your privacy and we never sell or rent our list to third parties. By downloading this White Paper you are agreeing to our terms of service. You can opt out at any time.

DCF Spotlight

Data center modules on display at the recent Edge Congress conference in Austin, Texas. (Photo: Rich Miller)

Edge Computing is Poised to Remake the Data Center Landscape

Data center leaders are investing in edge computing and edge solutions and actively looking at new ways to deploy edge capacity to support evolving business and user requirements.

An aerial view of major facilities in Data Center Alley in Ashburn, Virginia. (Image: Loudoun County)

Northern Virginia Data Center Market: The Focal Point for Cloud Growth

The Northern Virginia data center market is seeing a surge in supply and an even bigger surge in demand. Data Center Frontier explores trends, stats and future expectations for the No. 1 data center market in the country.

See More Spotlight Features

Newsletters

Get the Latest News from Data Center Frontier

Job Listings

RSS Job Openings | Pkaza Critical Facilities Recruiting

  • Electrical Commissioning Engineer - Los Angeles, CA
  • Data Center Construction Project Manager - Ashburn, VA
  • Critical Power Energy Manager - Data Center Development - Dallas, TX
  • Data Center Facilities Operations VP - Seattle, WA
  • Senior Electrical Engineer - Data Center - Dallas, TX

See More Jobs

Data Center 101

Data Center 101: Mastering the Basics of the Data Center Industry

Data Center 101: Mastering the Basics of the Data Center Industry

Data Center Frontier, in partnership with Open Spectrum, brings our readers a series that provides an introductory guidebook to the ins and outs of the data center and colocation industry. Think power systems, cooling, solutions, data center contracts and more. The Data Center 101 Special Report series is directed to those new to the industry, or those of our readers who need to brush up on the basics.

  • Data Center Power
  • Data Center Cooling
  • Strategies for Data Center Location
  • Data Center Pricing Negotiating
  • Cloud Computing

See More Data center 101 Topics

About Us

Charting the future of data centers and cloud computing. We write about what’s next for the Internet, and the innovations that will take us there. We tell the story of the digital economy through the data center facilities that power cloud computing and the people who build them. Read more ...
  • Facebook
  • LinkedIn
  • Pinterest
  • Twitter

About Our Founder

Data Center Frontier is edited by Rich Miller, the data center industry’s most experienced journalist. For more than 20 years, Rich has profiled the key role played by data centers in the Internet revolution. Meet the DCF team.

TOPICS

  • 5G Wireless
  • Cloud
  • Colo
  • Connected Cars
  • Cooling
  • Cornerstone
  • Coronavirus
  • Design
  • Edge Computing
  • Energy
  • Executive Roundtable
  • Featured
  • Finance
  • Hyperscale
  • Interconnection
  • Internet of Things
  • Machine Learning
  • Network
  • Podcast
  • Servers
  • Site Selection
  • Social Business
  • Special Reports
  • Storage
  • Sustainability
  • Videos
  • Virtual Reality
  • Voices of the Industry
  • Webinar
  • White Paper

Copyright Endeavor Business Media© 2022