• About Us
  • Partnership Opportunities
  • Privacy Policy

Data Center Frontier

Charting the future of data centers and cloud computing.

  • Cloud
    • Hyperscale
  • Colo
    • Site Selection
    • Interconnection
  • Energy
    • Sustainability
  • Cooling
  • Technology
    • Internet of Things
    • AI & Machine Learning
    • Edge Computing
    • Virtual Reality
    • Autonomous Cars
    • 5G Wireless
    • Satellites
  • Design
    • Servers
    • Storage
    • Network
  • Voices
  • Podcast
  • White Papers
  • Resources
    • COVID-19
    • Events
    • Newsletter
    • Companies
    • Data Center 101
  • Jobs
You are here: Home / Special Reports / The State of the Grid: Time for a Refresh

The State of the Grid: Time for a Refresh

By Bill Kleyman - March 10, 2022 Leave a Comment

The State of the Grid: Time for a Refresh

The US electric grid is often referred to as the most massive operating machine globally. Source PX Media / Shutterstock Courtesy of Enchanted Rock

LinkedinTwitterFacebookSubscribe
Mail

Last week we launched an article series exploring the state of the grid and improving energy solutions for evolving digital infrastructure power needs. This week, we’ll explore why it’s time for the electric grid to be refreshed.

Microgrids

Get the full report.

Where some believe our grid is just one giant ecosystem, that’s not entirely the case. The electrical power grid that powers Northern America is not a single grid, but is divided into multiple wide area synchronous grids. The Eastern Interconnection and the Western Interconnection are the largest, while the three other regions include the Texas Interconnection, the Quebec Interconnection, and the Alaska Interconnection.

According to the Environmental Protection Agency (EPA), the electrical power transmission grid in the USA is made up of over 7,300 power plants. The architecture includes nearly 160,000 miles of high-voltage power lines and millions of miles of low- voltage power lines and distribution transformers, connecting 145 million customers throughout the country. It’s often referred to as the most massive operating machine globally.

As expansive as this might be, our electric infrastructure is aging, and it is being pushed to do more than it was initially designed to do. Modernizing the grid to make it “smarter” and more resilient through the use of cutting-edge technologies, equipment, and controls, like microgrids that communicate and work together to deliver electricity more reliably and efficiently can significantly reduce the frequency and duration of power outages, reduce storm impacts, and restore service faster when outages occur.

 

Source: CACurrent.com

Consumers can better manage their energy consumption and costs because they have easier access to their data. Utilities also benefit from a modernized grid, including improved security, reduced peak loads, increased integration of renewables, and lower operational costs.

As we mentioned earlier, the grid can certainly handle quite a bit. However, it’s not perfect, and it will go down. Generally, the go-to backup method for data center leaders will be generators. Sure, generators could get you up and running, but for how long? What can communities, cities, schools and universities, data centers, hyperscalers, and even edge leaders do to deploy more resilient power solutions above and beyond generators and traditional backup solutions?

Understanding Generators and Diesel Power

Since critical infrastructure was deployed, leaders did their best to ensure that these environments stayed operational. Diesel generators were the go-to solution for hospitals, manufacturing, data centers, cities, and more for the longest time. And, for a time, they did indeed fill a specific role: ensure resiliency in times of emergencies. However, these traditional diesel generators also came with some severe challenges.

A recent study shows that in the state of California, the number of permitted diesel backup generator systems in just two of the state’s 35 air districts soared to 23,000, representing more than 12GW of power, with many more unpermitted. When fired up to keep power flowing to homes, hospitals, data centers, industrial plants and support the grid, they produce dangerous levels of toxic pollution.

California Energy Commission staff stated during a 2021 meeting that 21,000 permitted systems produce carbon dioxide emissions on par with 95,000 vehicles on the roads. This also represents about 15% of California’s Grid Capacity.

Aside from pollution issues, many permitted, and unpermitted diesel generators are estimated to fail 20% of the time after a two-week gird outage. Studies by IEEE and others show that emergency diesel generators tend to fail regarding resiliency. Moreover, in some cases, the average downtime of these generators can be as high as 478.0 hours per failure. Is that something you can afford? Microgrids offer a much higher level of resiliency, and they’re better for the environment. Believe it or not, they can also offer better economics.

One of the most significant differences when analyzing traditional backup generators and microgrids is when it comes to continuous operations. Simple backup generators are not microgrids. Further, these generators sit idle most of the time, except for the periodic testing and occasional power disturbance. Diesel generators that sit idle for most of the year and do not provide grid services become an expensive drag on the data center operator’s balance sheet and income statement. Still, they are essential to mitigating operational risk in the data center. On the other hand, microgrids operate 24/7/365, managing and supplying energy to their customers.

Another critical point is working with greener and more sustainable power solutions. Many leading organizations have actively committed to reducing emissions and running more optimally for greener and cleaner power. However, working with traditional legacy generators can pose some serious environmental efficiency challenges. Most data center operators are in a class by themselves regarding environmental performance. Their focus on improved energy efficiency inside the data center has achieved tremendous improvement in the last decade. And the decarbonizing of energy supplies is unsurpassed by any other industry. The diesel generator fleet at most data centers runs counter to these achievements. Diesel fuel is high carbon-emitting, high particulate emitting, and higher NOx emitting than natural gas equivalent.

Like those from Enchanted Rock, new solutions significantly reduced emissions of common air pollutants and about half the carbon footprint compared to diesel. With NOx emissions of less than 1% of Standard Tier 2 diesel generation and less than 4% of Standard Tier 4 final diesel generation, Enchanted Rock generators are a much cleaner alternative than diesel.

Let’s pause here and focus on another key topic: resiliency.

Resiliency in the Digital Age

The latest Tier 4 Uptime Institute classification of onsite power generation means data centers need to be rated for prime power delivery. Because of this, many data center leaders working with the edge, primary locations, and other sites are now looking even more closely at microgrids and other onsite power generation technologies.

A significant misconception around microgrids is that you’re buying a piece of equipment, and that’s it. However, modern microgrid solutions go far beyond onsite physical power solutions. New offerings revolve around microgrid-as-a-service where you as the customer never have to interact with the system.

This includes system design and engineering services, construction and commissioning, and financing. Furthermore, this includes operations
as well as response field services. New as-a-service features include:

  • 24/7 secure NOC
  • Maintenance scheduling
  • Asset management
  • Market operations
  • Billing and settlement
  • Weekly site visits and loaded test runs
  • 24/7 technician availability

Here’s the other key point — all of this is driven by data. Modern and sophisticated microgrid solutions produce data points that A.I. and machine learning engines then analyze. This data can provide information around anomalous behavior of parts if maintenance needs to be done, fluctuation in power that wasn’t expected, and even security metrics around access. Most of all, this information allows your microgrid to become predictive and prescriptive.

On the critical topic of resiliency, it’s also vital to understand how new weather patterns have impacted data center operations and outages. According to NOAA, in 2021, there were 18 weather and climate disaster events with losses exceeding $1 billion each to affect the United States. These events included one drought event, two flooding events, nine severe storm events, four tropical cyclone events, one wildfire event, and one winter storm event. Overall, these events resulted in the deaths of 538 people and had significant economic effects on the areas impacted. The U.S. has sustained 308 weather and climate disasters since 1980, where overall damages and costs reached or exceeded $1 billion. The total cost of these 308 events exceeds $2.085 trillion.

Source: NOAA

To put this into perspective, the total cost of U.S. billion-dollar disasters over the last five years (2016-2020) exceeds $600 billion, with a 5-year annual cost average of $121.3 billion, both of which are new records.

These concerns around resiliency, costs of an outage, and the requirement to look at new power sources have driven the modernization of power solutions in the digital infrastructure space. However, microgrids are not just another source of backup power generation, and modern microgrids have become far more advanced and intelligent.

Download the entire special report, “The State of the Grid: Improving Energy Solutions for Evolving Digital Infrastructure Power Needs” courtesy of Enchanted Rock to learn more. In our next article, we’ll examine the makings of a modern microgrid. Catch up on the previous article here.

LinkedinTwitterFacebookSubscribe
Mail

Tagged With: data center energy, data center microgrids, enchanted rock, Reliability

Newsletters

Stay informed: Get our weekly updates!

Are you a new reader? Follow Data Center Frontier on Twitter or Facebook.
bill@kleyman.org'

About Bill Kleyman

Bill Kleyman is a veteran, enthusiastic technologist with experience in data center design, management and deployment. Currently, Bill works as the Executive Vice President of Digital Solutions at Switch.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Facebook
  • Instagram
  • LinkedIn
  • Pinterest
  • Twitter

Voices of the Industry

Understanding the Differences Between 5 Common Types of Data Centers

Understanding the Differences Between 5 Common Types of Data Centers No two are data centers are alike when it comes to design or the applications and data they support with their networking, compute and storage infrastructure. Shad Secrist of Belden outlines the differences between 5 of the most common types of data centers including edge, colocation and hyperscale.

White Papers

design

Reimagine Enterprise Data Center Design and Operations

Future Facilities explores how digital twin technology can be used to virtualize and fine tune data center design.

Get this PDF emailed to you.

We always respect your privacy and we never sell or rent our list to third parties. By downloading this White Paper you are agreeing to our terms of service. You can opt out at any time.

DCF Spotlight

Data center modules on display at the recent Edge Congress conference in Austin, Texas. (Photo: Rich Miller)

Edge Computing is Poised to Remake the Data Center Landscape

Data center leaders are investing in edge computing and edge solutions and actively looking at new ways to deploy edge capacity to support evolving business and user requirements.

An aerial view of major facilities in Data Center Alley in Ashburn, Virginia. (Image: Loudoun County)

Northern Virginia Data Center Market: The Focal Point for Cloud Growth

The Northern Virginia data center market is seeing a surge in supply and an even bigger surge in demand. Data Center Frontier explores trends, stats and future expectations for the No. 1 data center market in the country.

See More Spotlight Features

Newsletters

Get the Latest News from Data Center Frontier

Job Listings

RSS Job Openings | Pkaza Critical Facilities Recruiting

  • Critical Power Energy Manager - Data Center Development - Ashburn, VA
  • Site Development Manager - Data Center - Ashburn, VA
  • Data Center Facility Operations Director - Chicago, IL
  • Electrical Engineer - Senior - Dallas, TX
  • Mechanical Commissioning Engineer - Calgary, Alberta

See More Jobs

Data Center 101

Data Center 101: Mastering the Basics of the Data Center Industry

Data Center 101: Mastering the Basics of the Data Center Industry

Data Center Frontier, in partnership with Open Spectrum, brings our readers a series that provides an introductory guidebook to the ins and outs of the data center and colocation industry. Think power systems, cooling, solutions, data center contracts and more. The Data Center 101 Special Report series is directed to those new to the industry, or those of our readers who need to brush up on the basics.

  • Data Center Power
  • Data Center Cooling
  • Strategies for Data Center Location
  • Data Center Pricing Negotiating
  • Cloud Computing

See More Data center 101 Topics

About Us

Charting the future of data centers and cloud computing. We write about what’s next for the Internet, and the innovations that will take us there. We tell the story of the digital economy through the data center facilities that power cloud computing and the people who build them. Read more ...
  • Facebook
  • LinkedIn
  • Pinterest
  • Twitter

About Our Founder

Data Center Frontier is edited by Rich Miller, the data center industry’s most experienced journalist. For more than 20 years, Rich has profiled the key role played by data centers in the Internet revolution. Meet the DCF team.

TOPICS

  • 5G Wireless
  • Cloud
  • Colo
  • Connected Cars
  • Cooling
  • Cornerstone
  • Coronavirus
  • Design
  • Edge Computing
  • Energy
  • Executive Roundtable
  • Featured
  • Finance
  • Hyperscale
  • Interconnection
  • Internet of Things
  • Machine Learning
  • Network
  • Podcast
  • Servers
  • Site Selection
  • Social Business
  • Special Reports
  • Storage
  • Sustainability
  • Videos
  • Virtual Reality
  • Voices of the Industry
  • Webinar
  • White Paper

Copyright Data Center Frontier LLC © 2022