• About Us
  • Partnership Opportunities
  • Privacy Policy

Data Center Frontier

Charting the future of data centers and cloud computing.

  • Cloud
    • Hyperscale
  • Colo
    • Site Selection
    • Interconnection
  • Energy
    • Sustainability
  • Cooling
  • Technology
    • Internet of Things
    • AI & Machine Learning
    • Edge Computing
    • Virtual Reality
    • Autonomous Cars
    • 5G Wireless
    • Satellites
  • Design
    • Servers
    • Storage
    • Network
  • Voices
  • Podcast
  • White Papers
  • Resources
    • COVID-19
    • Events
    • Newsletter
    • Companies
    • Data Center 101
  • Jobs
You are here: Home / Design / Taking Earthquake Protection to the Next Level in Data Centers

Taking Earthquake Protection to the Next Level in Data Centers

By Rich Miller - October 29, 2019 2 Comments

Taking Earthquake Protection to the Next Level in Data Centers

The Digital Realty 365 Main data center in San Francisco is one of the few data centers in the U.S. with a base isolation system for earthquake protection. (Photo: Digital Realty)

LinkedinTwitterFacebookSubscribe
Mail

SAN FRANCISCO – Should data center operators create more facilities with advanced earthquake protection? If they do, will customers pay a little more to improve earthquake defenses for their IT infrastructure?

The topic is especially relevant to data center operators on the West Coast, where three major data center markets – Silicon Valley, Los Angeles and Seattle – have a history of destructive earthquakes. Despite the mission-critical industry’s focus on risk, building-level earthquake protection systems are rare in the United States.

Those questions are at the heart of a new project in Silicon Valley, where RagingWire/NTT is creating a base isolation system to provide an extra layer of earthquake protection for its first data center in Santa Clara. The decision is influenced by NTT’s experience in Japan, where base isolation is commonly used in high-rise buildings in urban areas.

There are about 9,000 buildings in Japan that use the advanced earthquake systems. But the story is very different in the U.S., where only about 175 buildings are equipped with base isolation, a discrepancy explored in a recent story by The New York Times. They include the new Apple headquarters in Cupertino, Calif. along with Los Angeles City Hall.

In nearly 20 years covering the data center industry, I’ve encountered only one data center in the United States with a base isolation system – the 365 Main facility in San Francisco. To get a fuller understanding of earthquake defense in data centers, we’ll review system installed at 365 Main, and the plans for the RagingWire/NTT facility. But first, some background on trends in earthquake protection.

The Risk Equation in Earthquake Protection

Although Japan mandates strong earthquake defenses, governments in the U.S. leave the choice to real estate developers. America has long maintained stronger building codes than many other countries, and had fewer seismic catastrophes in recent years. As a result, earthquake disasters can be viewed as rare events, with a different risk frequency profile than other disasters. These systems involve additional cost, and most builders opt not to invest additional funds to add base isolation systems, despite the awareness of the potential that a “Big One” is a possibility.

“We seem intent on creating buildings with a minimal level of protection,” said Bob Woolley, Senior VP of Operations for RagingWire/NTT Data Centers. “People often don’t really understand the risk from earthquakes. They have a false sense of security. In the world we live in, people never take the risk until something happens.”

Woolley said that California building codes are designed so that buildings will remain standing, but can move quite a bit during an earthquake. That’s an issue for a building filled with racks of servers and power equipment instead of offices.

“Our intent is to create a building that not only keeps people safe, but keeps the equipment safe inside it,” said Woolley. “You have to create space for the building to move.”

U.S. data center companies that are concerned about earthquake risk typically adopt rack-level isolation units, which are installed under racks and cabinets and employ a ball-and-cone system to allow the equipment to gently roll back and forth during an earthquake. Worksafe Technologies has been a leading vendor of these systems.

Free Resource from Data Center Frontier White Paper Library

Build-to-Suit Data Center
Case Study: Financial Services Build-to-Suit Data Center — Strength through Flexibility
In the competitive and highly regulated banking industry, demands on financial institutions come not only from customers, but from regulators and shareholders. In fact, the financial services sector is one of the most heavily regulated industries in the nation. Get the new report that shows how a collaborative partnership with Stream Data Centers gave one of the nation’s largest commercial banks the security and control of a standalone facility and the ability to specify the design, build and ongoing operation of a dedicated data center building that incorporated the most critical elements of the existing customer-built facility.
We always respect your privacy and we never sell or rent our list to third parties. By downloading this White Paper you are agreeing to our terms of service. You can opt out at any time.

Get this PDF emailed to you.

Providing earthquake protection at the building level involves similar concepts, but a lot more engineering. Let’s take a look at base isolation systems and how they work.

Earthquake Protection at 365 Main

San Francisco is home to a vibrant tech community, but experienced widespread devastation from a 1906 quake and sustained another big hit in the 1989 Loma Prieta (“World Series”) earthquake.

In 2000, colocation provider AboveNet acquired a former tank factory at 365 Main in San Francisco. The structure is built atop a chunk of bedrock on Rincon Point that supports the pillars of the Bay Bridge (which runs alongside the site) and outside the liquefaction zones were earth is likely to be displaced by an earthquake. We recently toured the building with the team from Digital Realty, the current owner and landlord.

During its $130 million retrofit, AboveNet opted to go the extra mile by installing a seismic base isolation system. The system is visible in the facility’s underground parking garage, where each of the 94 columns supporting the building are equipped with a special joint known as a “friction pendulum” consisting of a plate and rubber bearings that absorbs the shock created by seismic movements.

The base isolation units are visible at the top of each of the 98 columns supporting the building, which can be seen in the underground parking garage. (Photo: Digital Realty)

The base isolation units are visible at the top of each of the 98 columns supporting the building, which can be seen in the underground parking garage. (Photo: Digital Realty)

In an earthquake, this will allow the entire building to effectively float above the shifting ground beneath it. The isolator is typically a sandwich of rubber and steel plates, and at 365 Main, they allow columns to sway as much as 15 inches in either direction

The piping, cabling and utility connections join the building above the isolation joints to protect their integrity in the event of an earthquake.

The base isolation units sit atop each pillar in the 365 parking garage. (Photo: Digital Realty)

The base isolation units sit atop each pillar in the 365 parking garage. (Photo: Digital Realty)

The earthquake engineering extends outside the building, which is surrounded by an 18-inch wide “seismic moat” that will allow the sidewalk areas to fold and absorb the shock of a large quake.

Earthquake Protection at RagingWire, Santa Clara

As the U.S. data center business of NTT, RagingWire is part of an organization that takes earthquake risk seriously. A number of the company’s data centers in Japan are in high-rise buildings in urban centers, and equipped with base isolation systems. RagingWire has often noted that its data center campuses in Sacramento are in a more seismically stable location than the San Francisco Bay Area.

When it bought a 3.3-acre site in Santa Clara last year for its first facility in Silicon Valley, RagingWire/NTT began working with Paradigm Structural Engineers to create a base isolation system for the four-story, 16-megawatt data center.

“Our goal was to provide the maximum amount of protection,” said Woolley. “This is the right thing to do. We also thought this would be interesting to customers.”

A diagram showing how base isolation allows a building to move in either direction during an earthquake. (Image: RagingWire/NTT)

Woolley said that designing the system means balancing several design options in determining how much movement to allow. “The superstructure undergoes 60 percent less motion than a non-isolated fixed building,” he said. “There is some motion, but it’s far less than without the base isolation system.”

Isolator systems can be designed to experience movement ranging from two feet to five feet. Designing for additional motion will require larger isolators. RagingWire/NTT is using triple-friction pendulum (TFP) bearings, which will be about 6 feet in diameter. The system will also include viscous dampers, which provide passive energy dissipation by passing a piston through a shaft filled with viscous fluid, similar to shock absorbers. At the Santa Clara building, these dampers will limit the range of motion to 32 inches in either direction.

 

Woolley said the system isn’t designed for a particular magnitude of earthquake. In structure protection, the key issue is the duration of a seismic event.

“An earthquake that lasts a short period of time is a very different event from one that last a long period of time,” said Woolley.

The additional earthquake protection required investment by RagingWire/NTT, and that may be reflected in slightly higher leasing rates. Woolley believes Santa Clara is the right market to offer this product to the market.

“In this building, it’s probably $5 million (in additional construction costs),” said Woolley. “We hope we’ll find customers that value the additional protection. There’s a premium for it. We’re in a competitive market here, but it’s not a 60-megawatt building, it’s a 16-megawatt building. We’re betting that there are 16 megawatts worth of customers willing to pay a slight premium.

“It’s not a play where we think we’re more profitable because we have a better widget,” he added. “We think it’s the right thing to do for customers, and people will find value in it.”

 

LinkedinTwitterFacebookSubscribe
Mail

Tagged With: Digital Realty, Earthquakes, RagingWire Data Centers, San Francisco, Santa Clara, Silicon Valley

Newsletters

Stay informed: Get our weekly updates!

Are you a new reader? Follow Data Center Frontier on Twitter or Facebook.

About Rich Miller

I write about the places where the Internet lives, telling the story of data centers and the people who build them. I founded Data Center Knowledge, the data center industry's leading news site. Now I'm exploring the future of cloud computing at Data Center Frontier.

Comments

  1. tom.widawsky@hdrinc.com'Tom Widawsky says

    October 31, 2019 at 2:57 pm

    Rich,

    I worked on the first base-isolated data center in the US back in 2008 out in Ogden, Utah for America First Federal Credit Union. The data center facility is around 50,000 SF in total and has not only the data center, offices, and electrical/mechanical spaces all on the base-isolated foundation, but also the generators and fuel storage tanks on the system as well. I was not with HDR at that time, but another data center design firm.

    Reply
  2. bvtengineering0@gmail.com'structural engineer says

    July 17, 2020 at 1:15 am

    This is great information, it will help us a lot to understand about taking these earthquake protection to next level… Thank you very much for sharing this, and also I am very impressed the way you have explained about this. I must say this, if you get time can visit Bvtengineering.com for ideas on this topic.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Facebook
  • Instagram
  • LinkedIn
  • Pinterest
  • Twitter

Voices of the Industry

EOL & EOSL and Long-Term Hardware Infrastructure Strategy

EOL & EOSL and Long-Term Hardware Infrastructure Strategy With close to 25 years of data center and IT expertise, Chad Peters of Service Express shares insights regarding the equipment life cycle and how IT leaders can better prepare their budget, strategy and future projects.

DCF Spotlight

The COVID-19 Crisis and the Data Center Industry

The COVID-19 pandemic presents strategic challenges for the data center and cloud computing sectors. Data Center Frontier provides a one-stop resource for the latest news and analysis for decision-makers navigating this complex new landscape.

An aerial view of major facilities in Data Center Alley in Ashburn, Virginia. (Image: Loudoun County)

Northern Virginia Data Center Market: The Focal Point for Cloud Growth

The Northern Virginia data center market is seeing a surge in supply and an even bigger surge in demand. Data Center Frontier explores trends, stats and future expectations for the No. 1 data center market in the country.

See More Spotlight Features

White Papers

data center provider

How to Choose a Data Center Provider

Asking the right questions is a big part of the equation. Here are eight considerations in a new white paper from Iron Mountain with targeted questions to ask that will help you choose the right colocation partner for your business. 

Get this PDF emailed to you.

We always respect your privacy and we never sell or rent our list to third parties. By downloading this White Paper you are agreeing to our terms of service. You can opt out at any time.

Newsletters

Get the Latest News from Data Center Frontier

Job Listings

RSS Job Openings | Peter Kazella and Associates, Inc

  • MEP Superintendent - Data Center - Columbus, OH
  • Navy Electrician / Navy Mechanic - Hillsboro, OR
  • Generator Sales Associate - New York, NY
  • Mechanical Engineer - Shorewood, WI
  • UPS Field Service Technician - Boston, MA

See More Jobs

Data Center 101

Data Center 101: Mastering the Basics of the Data Center Industry

Data Center 101: Mastering the Basics of the Data Center Industry

Data Center Frontier, in partnership with Open Spectrum, brings our readers a series that provides an introductory guidebook to the ins and outs of the data center and colocation industry. Think power systems, cooling, solutions, data center contracts and more. The Data Center 101 Special Report series is directed to those new to the industry, or those of our readers who need to brush up on the basics.

  • Data Center Power
  • Data Center Cooling
  • Strategies for Data Center Location
  • Data Center Pricing Negotiating
  • Cloud Computing

See More Data center 101 Topics

About Us

Charting the future of data centers and cloud computing. We write about what’s next for the Internet, and the innovations that will take us there. We tell the story of the digital economy through the data center facilities that power cloud computing and the people who build them. Read more ...
  • Facebook
  • LinkedIn
  • Pinterest
  • Twitter

About Our Founder

Data Center Frontier is edited by Rich Miller, the data center industry’s most experienced journalist. For more than 15 years, Rich has profiled the key role played by data centers in the Internet revolution. Meet the DCF team.

TOPICS

  • 5G Wireless
  • Cloud
  • Colo
  • Connected Cars
  • Cooling
  • Cornerstone
  • Coronavirus
  • Design
  • Edge Computing
  • Energy
  • Executive Roundtable
  • Featured
  • Finance
  • Hyperscale
  • Interconnection
  • Internet of Things
  • Machine Learning
  • Network
  • Podcast
  • Servers
  • Site Selection
  • Social Business
  • Special Reports
  • Storage
  • Sustainability
  • Videos
  • Virtual Reality
  • Voices of the Industry
  • White Paper

Copyright Data Center Frontier LLC © 2021